Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods
نویسندگان
چکیده
This article provides a solution based on statistical methods (ARIMA, ETS, and Prophet) to predict monthly power demand, which approximates the relationship between historical future demand patterns. The energy time series shows seasonal fluctuation cycles, long-term trends, instability, random noise. In order simplify prediction issue, load is represented by an annual cycle pattern, unifies data filters trends. A simulation study performed electricity for 35 European countries confirmed high accuracy of proposed models.
منابع مشابه
Statistical Analysis and Modeling (Forecasting) of the Temperature Time Series of Ahvaz Metropolis
Forecasting of temperature and precipitation can be efficiently used in decision making and optimal use of water resources. Studies in Iran have indicated a significant increase in annual temperature. This issue should be further researched in the Ahvaz region because it is the population hub in the southwest of Iran and the pole of irrigation networks and traditional agricultural land ...
متن کاملStochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity
Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks
Neural networks have been widely used for short-term, and to a lesser degree medium and long term, demand forecasting. In the majority of cases for the latter two applications, multivariate modeling was adopted, where the demand time series is related to other weather, socio-economic and demographic time series. Disadvantages of this approach include the fact that influential exogenous factors ...
متن کاملTime Series Forecasting Using Computational Intelligence Methods
Abstract: Forecasting the future evolution of a system based only on past information comprises a central scientific problem. In this work we investigate the comparative performance of recurrent multi–layer perceptrons, trained through backpropagation through time and the differential evolution algorithm, to perform one–step–ahead predictions for the laser time series (Data set A) from the Sant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2023
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en16020827